

Stoichiometry Review Key

- 1. A unit of measurement based on the number of atoms or molecules.
- 2. The molar mass of the atom or molecule.
- 3. Answers vary.
- 4. 6.02 x 10²³; to calculate number of atoms or molecules.
- 5. Calculate the molar mass of the following compounds:
 - a. 153.88 g/mol
 - b. 275.15 g/mol
 - c. 285.73 g/mol
 - d. 97.57 g/mol
 - e. 342.15 g/mol
 - f. 139.31 g/mol
- 6. Convert the following units into moles:
 - a. 410.5 mol Fe⁺³ ions
 - b. 0.1387 mol OsO4
 - c. 3.9833 mol CBr₄
 - d. 0.0178 mol NaOH
- 7. Convert the following units into grams:
 - a. 73.1 g CO₂
 - b. 213.4 g KIO₃
 - c. 2.65 x 10⁷ g BF₃
 - d. 1.04 g BeCr₂O₇
- 8. Stoichiometry is the quantitative study of relationships between reactants and products in a chemical reaction.
- 9. The relationship between moles of one substances in a chemical reaction.
- 10. Without a balanced reaction the appropriate mole ratios may not be determined.
- 11. No relationship exists between the masses of reactants and products. Moles, however, are based on a number of particles. Explain this further.
- 12. Answers vary.
- 13. Complete the table:

NH₄NO₃	N ₂ O	2H ₂ O
254 g	139 g	114 g
3.17 mol	3.17 mol	6.33 mol

- 14. How many moles are formed from 2.25 mol NH₄NO₃?
 - a. 2.25 mol N₂O
 - b. 4.50 mol H₂O
- 15. 0.26 mol O₂
- 16. CFC-12 reaction:
 - a. $2HF + CCl_4 \rightarrow CCl_2F_2 + 2HCl$
 - b. 192 g CCl₄
 - c. 151 g CCl₂F₂
- 17. KClO₃ reaction:
 - a. $2KClO_3 \rightarrow 3O_2 + 2KCl$
 - b. 21.7 g O₂
 - c. 20.1 g KCl
- 18. (actual)/(theoretical) x 100%
- 19. Define and describe these terms.
- 20. Answers vary.
- 21. Answers vary.
- 22. **76.2%**
- 23. The reactant that runs out first. This determines the extent of the reaction (how much product is made).
- 24. Ammonia reaction:
 - a. 2 $NH_3 + H_2SO_4 \rightarrow (NH_4)_2SO_4$
 - b. H₂SO₄ is limiting reactant
 - c. 1.348 x 10⁵ g; 134.8 kg (NH₄)₂SO₄
 - d. 65.3 kg NH₃ remaining
 - e. **72.94%**
- 25. 15.8 g NH_3 produced; 83.5 g N_2 remain
- 26. Sodium, because O₂ is allowed to react in excess. You have more oxygen than needed for the reaction.
- 27. Lab data question:
 - a. $2Fe + 3S \rightarrow Fe_2S_3$
 - b. Data Table:
 - i. 3.629 g Fe
 - ii. 3.891 g S
 - iii. 6.04 g Fe₂S₃
 - c. Fe is the limiting reactant.
 - d. 6.752 g Fe₂S₃
 - e. **89.5%**
 - f. Answers vary.